INVENTÁRIO DO CICLO DE VIDA DE ROCHAS ORNAMENTAIS – LEVANTAMENTO, TRATAMENTO E DESCRIÇÃO DOS DADOS DA EXTRAÇÃO

VICTOR MOZA PONCIANO

Aluno de Graduação em Engenharia de Minas 6º período, IFES Período PIBIC/CETEM: agosto de 2012 a julho de 2013, vponciano@cetem.gov.br

MÔNICA CASTOLDI BORLINI GADIOLI

Orientadora, Engenheira Química, D.Sc. mborlini@cetem.gov.br

1. INTRODUÇÃO

A Avaliação do Ciclo de Vida (ACV) é uma importante técnica para avaliar os impactos ao meio ambiente e a saúde humana, de qualquer atividade econômica e seus produtos, em todo o seu ciclo de vida (IBICT, 2009). Seguindo essa técnica, está sendo realizado o Inventário do Ciclo de Vida de Rochas Ornamentais, ICV – Rochas, um projeto que está sendo executado seguindo a Metodologia Padrão para Elaboração de Inventários de Ciclo de Vida da Indústria Brasileira, e tem como objetivo o abastecimento do banco de dados de inventários de ciclo de vida brasileiro, com informações de entradas e saídas do processo produtivo de rochas ornamentais, coletadas em empresas do setor no Espírito Santo; contribuir para a melhoria dos processos produtivos, competitividade dos produtos do ponto de vista ambiental e validação da metodologia brasileira.

2. OBJETIVOS

O presente estudo teve como objetivo a coleta, o tratamento e a descrição dos dados da extração de rochas para o Inventário do Ciclo de Vida de Rochas Ornamentais.

3. ICV - ROCHAS

Ciclo de vida de um produto engloba todas as etapas de produção e uso, desde a retirada das matérias primas da natureza inseridas no processo produtivo (berço) até a sua disposição final (túmulo). A Avaliação do Ciclo de Vida (ACV) é uma técnica que avalia todas as entradas e saídas de materiais e energia da cadeia produtiva de um produto, apontando impactos potenciais associados a esse ciclo. Um estudo de ACV compreende quatro fases: a definição de objetivo e escopo; análise de inventário; avaliação de impactos e a fase de interpretação (ABNT, 2009a).

A análise de inventário do ciclo de vida (ICV) é a segunda fase de uma ACV. Essa fase diz respeito a um inventário de dados de entradas e saídas associado ao processo ou produto. E é esta fase que envolve a coleta de dados necessária para o alcance dos objetivos do estudo (ABNT, 2009b). Resumidamente, o papel de um ICV é coletar, analisar e interpretar todas essas informações, para posteriormente, em uma avaliação de ciclo de vida (ACV), serem avaliados os impactos potenciais do ciclo de vida desse produto.

O projeto denominado Melhorias Tecnológicas, Ambientais e Energéticas da Produção de Rochas Ornamentais por meio da Avaliação do Ciclo de Vida do Produto, ICV-Rochas, é um dos estudos piloto que visa contribuir para a validação da metodologia de elaboração de inventários desenvolvida no Brasil, seguindo a técnica da ACV. O projeto visa também abastecer o banco de dados composto pelos inventários brasileiros com informações de entradas (insumos e energia) e saídas (emissões, resíduos e produto) de materiais e energia da cadeia produtiva de rochas, desde a retirada dos blocos na lavra à saída de chapas polidas da fábrica. Portanto, o projeto envolve as três etapas básicas da produção das rochas ornamentais: extração, beneficiamento primário (serragem) e beneficiamento secundário (polimento). No final do projeto, pretende-se apresentar aos tomadores de decisões, informações relacionadas aos

processos de produção de rochas ornamentais, e assim, contribuir para a produtividade voltada para o desenvolvimento sustentável e a competitividade ambiental dos produtos no mercado.

O levantamento de dados foi realizado no estado do Espírito Santo, devido sua representatividade no mercado brasileiro de rochas ornamentais, o qual é responsável por 56% do volume de rochas produzidas em todo o país (CHIODI FILHO, 2009). Foram coletados dados do período de 2010 e 2011 em três empresas do setor. O escopo do projeto foi definido de acordo com as normas NBR 14040 (ABNT, 2009a) e NBR 14044 (ABNT, 2009b) e o estudo consiste em dois sistemas de produtos: extração e beneficiamento.

O objeto de estudo do projeto é o beneficiamento de rochas, assim, este é o sistema de produto principal. Porém, uma vez que a matéria prima do beneficiamento é produto da extração de rochas (blocos), observou-se a necessidade de executar também um inventário para a extração, visto que este ainda não existia. Dessa forma, a extração foi considerada um sistema de produto auxiliar. No entanto, para o trabalho em questão, o processo de extração de rochas ornamentais é tratado com a mesma importância que o beneficiamento. Isso acarretou em um grande número de dados a serem coletados, tornando o estudo abrangente e ainda mais complexo.

4. PROCESSO DE EXTRAÇÃO DE ROCHAS ORNAMENTAIS

No Brasil são registradas atividades de extração de rochas ornamentais em cerca de 400 municípios. São aproximadamente 1.800 frentes ativas de lavra e uma enorme diversidade de rochas produzidas, cerca de 1.200 variedades comerciais (CHIODI FILHO, 2008).

A cadeia produtiva de rochas ornamentais inicia-se nas pedreiras (termo utilizado para denominar as minas a céu aberto de rochas), de onde são extraídos os blocos de rocha, sendo que as dimensões padronizadas são de aproximadamente 2,90 x 1,90 x 1,80 m.

O método de extração mais aplicado é retirando-se os blocos da frente de lavra por meio de técnicas de corte contínuo, geralmente por métodos de bancadas (lavra por maciços rochosos). Pode-se também extrair os blocos aproveitando rochas isoladas na área da pedreira (lavra por matação).

No caso da extração por bancadas, o aplicado pelas empresas parceiras, o maciço é recortado com o uso do fio diamantado, que segundo Marcon *et al.* (2012) é a técnica mais utilizada na lavra de granitos comerciais, devido seu baixo custo e alta produtividade. O método consiste no isolamento com fio de grandes porções de rocha chamadas de quadrotes, que são subdivididos em pranchas (ou filões), também com fio e essas, por sua vez, em blocos por perfuração e detonação ou recorte a fio (Fiura 1). Após essa etapa, os blocos são direcionados para o pátio de estocagem, onde aguardam o transporte para o beneficiamento.

Figura 1. Método de lavra por bancadas

Os resíduos da extração são direcionados para a pilha de estéril (conhecido como "bota-fora", expressão muito usada em minerações de rochas). Essa parte do material não é utilizada como rocha ornamental por estar trincada ou quebrada em pequenos pedaços.

5. METODOLOGIA

Para a execução desse trabalho, seguiu-se a metodologia padrão brasileira de elaboração de inventários (IBICT, 2009). A seguir são descritas as etapas realizadas nesse trabalho.

5.1 Levantamento de Dados

Esta etapa constituiu-se na coleta dos dados nas empresas. O levantamento compreendeu a coleta de dados de todas as entradas e saídas da produção na pedreira, do transporte e informações específicas de cada empresa como: tempo de trabalho, equipamentos usados na lavra, número de trabalhadores, entre outros. Todas essas informações serviram para analisar a estrutura física da empresa e relacioná-la com sua produção, consumo de insumos/energia e as emissões ao meio ambiente. Para a coleta de dados, foi utilizado um questionário modelo, o qual foi elaborado de acordo com a realidade do setor de rochas. Este é constituído por uma planilha onde foram preenchidas informações relacionadas à produção na pedreira. O questionário abrange o consumo mensal de insumos, gasto energético, emissões de gases e partículas (para o ar, água e solo), volume de produção de blocos e dados de transporte (distância, consumo de combustíveis, meios de transportes, entre outros).

Todos os dados coletados nesse trabalho são primários (dados recolhidos diretamente no local de estudo, *in loco*, e não por meio de terceiros). Dados primários agregam a um estudo de inventário maior credibilidade e confiabilidade nos resultados. Os dados foram comprovados em campo nas visitas. As entradas compreendem a própria matéria prima (rocha) e uma série de insumos, como: energia elétrica, óleo diesel, água, fio diamantado, explosivos, hastes de perfuração, cunhas de pressão, cabos de aço e argamassa expansiva. Por sua vez, as saídas compreendem o produto (blocos de rocha), emissões ao ar, efluentes e resíduos sólidos.

5.2 Tratamento

O questionário entregue às empresas (cujo objetivo é uniformizar a aquisição dos dados), quando devolvido e conferido em campo, passa por um processo de padronização das unidades. Por exemplo, insumos como fio diamantado, cabos de aço, cordel detonante, encontravam-se em metros. Contudo, sabendo-se as especificações técnicas desses produtos, eles foram convertidos para quilogramas. Essa adequação dos dados é necessária para que haja uma harmonização para modelagem do estudo, tornando-os compatíveis com as utilizadas pelo software.

5.3 Descrição

Uma descrição detalhada da coleta de dados foi necessária para manter a credibilidade e confiabilidade dos dados. As principais informações contidas na descrição são: o ano ou período de referência, local de coleta, se são dados primários ou não, local de produção (nacional ou importado) e, de forma detalhada e clara, os cálculos empregados.

Após a realização das etapas citadas, os dados são enviados para a modelagem. Nessa fase, toda a carga ambiental de cada insumo é levantada na base de dados do software utilizado e computada para o presente inventário juntamente com a liberação de substâncias para o meio ambiente.

6. RESULTADOS E DISCUSSÃO

Todas as entradas já foram quantificadas e já estão em fase de modelagem. O consumo médio dos principais insumos por metro cúbico de bloco produzido é apresentado na Tabela 1. Por sua vez, alguns dados de saídas, como quantificação de efluentes e emissões ao ar, estão sendo levantados.

O aproveitamento médio das três pedreiras estudadas nesse trabalho está em torno de 18%, todo o restante do material é considerado resíduo. Observou-se a geração, em média, de 88 mil m³ (aproximadamente 235 mil toneladas) de resíduos por ano para cada empresa desse estudo.

Sabe-se que esses resíduos podem ser utilizados em diversas aplicações, tanto na produção de peças para a construção civil, como paralelepípedos; britados como agregados e como matéria prima para outras indústrias.

Tabela 1. Consumo das principais entradas auxiliares por metro cúbico de bloco produzido na pedreira

Entradas auxiliares	Diesel	Fio Diamantado	Cordel Detonante	Espoleta	Bit de Perfuração	Bit Fundo-Furo
Consumo (kg/m³)	8,97	0,07	0,03	0,01	0,05	0,01
Desvio Padrão	5,48	0,04	0,02	0,02	0,03	0,01

Analisando a Tabela 1, nota-se o alto valor do desvio padrão para alguns insumos, que é explicado pelo fato das empresas estarem inseridas em diversos cenários. Considerando os dados estimados no estudo realizado pela Universidade do Tennessee (2008), nota-se que o valor do consumo de energia elétrica é de aproximadamente 1,77E+05 Btu/ton (137 kWh/m³), bem maior que o estimado no presente estudo.

Este trabalho mostrou-se como um grande desafio. É possível ressaltar algumas dificuldades encontradas, como a adaptação do questionário, devido às particularidades do setor, a dificuldade de controle do consumo de materiais e diversidade na gestão e controle produtivo das empresas se mostraram presentes nessa etapa. Outro fator interessante foi a coleta de dados, onde o grande número de informações a serem coletadas resultou em uma maior complexidade do inventário. Entretanto, resultados esperados têm sido alcançados, como a quantificação de materiais e energia, resíduos, controle de insumos que não eram controlados em algumas empresas e melhorias nos processos produtivos.

7. AGRADECIMENTOS

Agradeço à orientadora Mônica Borlini pela dedicação, a toda equipe do CETEM pelo apoio, ao CNPq pela bolsa concedida e aos meus pais pelo incentivo.

8. REFERÊNCIAS BIBLIOGRÁFICAS

ABNT, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **Gestão ambiental – Avaliação do ciclo de vida – Princípios e estrutura**. 21 p. (Norma ABNT NBR ISO 14040). 2009a.

ABNT, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **Gestão ambiental – Avaliação do ciclo de vida – Requisitos e orientações**. 46 p. (Norma ABNT NBR ISO 14044). 2009b.

CHIODI FILHO, C. Balanço das Exportações e Importações Brasileiras de Rochas Ornamentais em 2008. São Paulo: ABIROCHAS, 2009. 23p. (Informe n. 03/2009).

CHIODI FILHO, C. Situação Atual e Perspectivas Brasileiras no Setor de Rochas Ornamentais. São Paulo: ABIROCHAS, 2008. 38 pp. (Informe 02/2008).

IBICT, INSTITUTO BRASILEIRO DE INFORMAÇÃO EM CIÊNCIA E TECNOLOGIA . Metodologia padrão para a elaboração de inventários de ciclo de vida da indústria brasileira. Documento consolidado. Brasília: IBICT, 2009. 228 p.

MARCON, Douglas Bortolote; PEITER, Carlos César; FERNÁNDEZ CASTRO, N. Utilização de fio diamantado na lavra de granitos comerciais. In: **Jornada de Iniciação Científica**, Rio de Janeiro: CETEM, jul. 2012.

University of Tennessee .Natural Stone Council. Granite Dimensional Stone Quarrying and Processing: A Life-Cycle Inventory. Report. Center for Clean Products, 2008, 25 p.